Enhancement of Photo-Oxidation Activities Depending on Structural Distortion of Fe-Doped TiO2 Nanoparticles

نویسندگان

  • Yeonwoo Kim
  • Sena Yang
  • Eun Hee Jeon
  • Jaeyoon Baik
  • Namdong Kim
  • Hyun Sung Kim
  • Hangil Lee
چکیده

To design a high-performance photocatalytic system with TiO2, it is necessary to reduce the bandgap and enhance the absorption efficiency. The reduction of the bandgap to the visible range was investigated with reference to the surface distortion of anatase TiO2 nanoparticles induced by varying Fe doping concentrations. Fe-doped TiO2 nanoparticles (Fe@TiO2) were synthesized by a hydrothermal method and analyzed by various surface analysis techniques such as transmission electron microscopy, Raman spectroscopy, X-ray diffraction, scanning transmission X-ray microscopy, and high-resolution photoemission spectroscopy. We observed that Fe doping over 5 wt.% gave rise to a distorted structure, i.e., Fe2Ti3O9, indicating numerous Ti(3+) and oxygen-vacancy sites. The Ti(3+) sites act as electron trap sites to deliver the electron to O2 as well as introduce the dopant level inside the bandgap, resulting in a significant increase in the photocatalytic oxidation reaction of thiol (-SH) of 2-aminothiophenol to sulfonic acid (-SO3H) under ultraviolet and visible light illumination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining the Catalytic Activity of Transition Metal-Doped TiO2 Nanoparticles Using Surface Spectroscopic Analysis

The modified TiO2 nanoparticles (NPs) to enhance their catalytic activities by doping them with the five transition metals (Cr, Mn, Fe, Co, and Ni) have been investigated using various surface analysis techniques such as scanning electron microscopy (SEM), Raman spectroscopy, scanning transmission X-ray microscopy (STXM), and high-resolution photoemission spectroscopy (HRPES). To compare cataly...

متن کامل

Visible Light Activity of Nitrogen-Doped TiO2 by Sol-Gel Method Using Various Nitrogen Sources

In order to improve photocatalytic activities of the pure anatase TiO2 under UV and visible light irradiations, a novel and efficient N-doped TiO2 photocatalyst was prepared by sol-gel method. N-doped titania is prepared using the various nitrogen sources such as: triethylamine, N,N,N’,N’-tetramethylethane-1,2-diamine, ethyldiamine, 1,2-phenylenediamine, propanolamine, and...

متن کامل

Photocatalytic Mineralization of Methylene BlueAqueous Solutions by Ag/TiO2 Nano Composite

Nanocomposite of Ag/TiO2 and nanocrystalline TiO2 were prepared by using TiCl4 as a precursor in a simple sol-gel process. The prepared photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), energy dispersive X-ray microanalysis (EDX), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). A complete and effective photocat...

متن کامل

Structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study

We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...

متن کامل

Structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study

We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016